Traffic Engineering and its Impact on Operation and Safety

Presented by Muhammad Musa, PhD. PE Senior Project Manager April 30, 2013

Engineering is Finding Solutions

Mathematics Science Engineering Principles

Transportation Engineering

It is defined as a discipline applying technology and scientific principles to the planning, functional design, operation, and management of facilities for all modes of transportation, including land, rail, water, air, and pipe

Definition of Traffic Engineering

It is the phase of transportation engineering that deals with the planning, geometric design and traffic operations of roads, streets and highways, their networks, terminals, abutting lands, and relationships with other modes of transportation

Basic Concepts and Areas of Emphases

Components of Traffic Stream Traffic Stream Characteristics Traffic Studies:

- Data Collection
- Volume Studies
- Accident Studies
- Speed Travel Time and Delay Studies
- Parking, Pedestrian, Bicycle Studies

Urban Street and Highways Traffic Control Capacity Analyses Level of Service Analyses Management and Operation of Congested Facilities

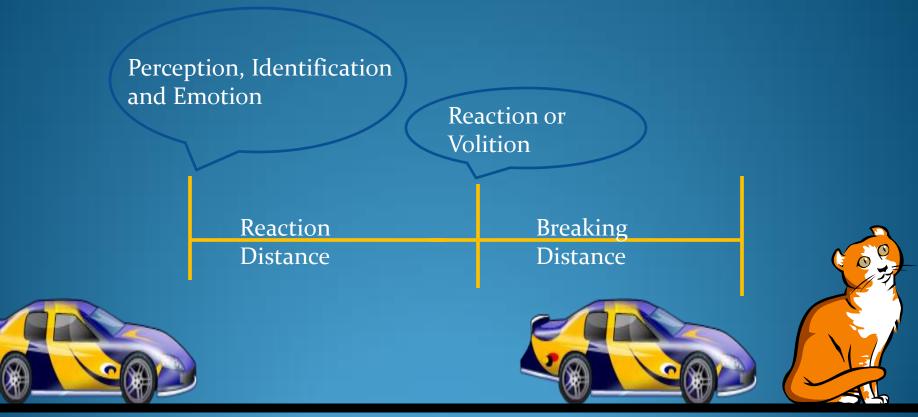
Components of Traffic System Road Users & Vehicles

Human Response Process

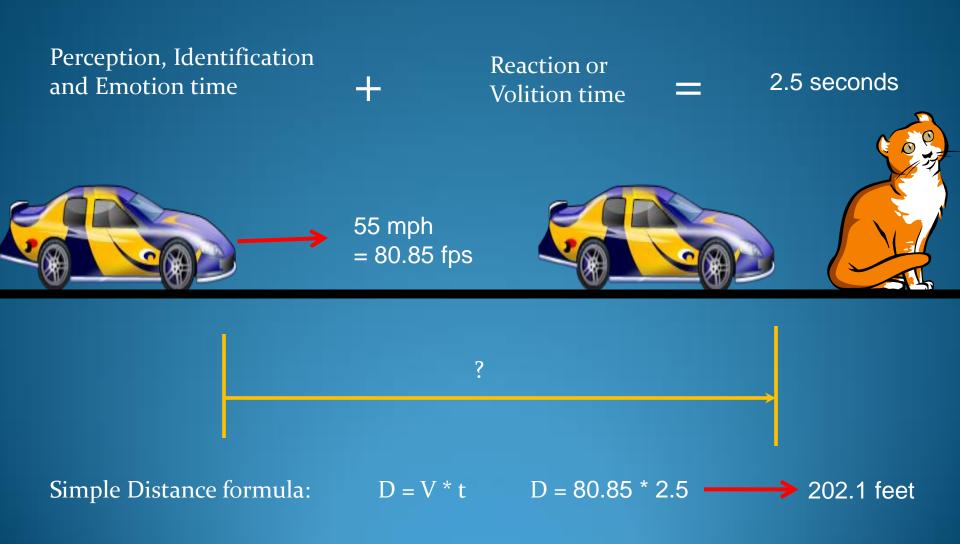
Visual Reception

- Visual Acuity
- Peripheral Vision
- Color Vision
- Glare Vision & Recovery
- Depth Perception

- 20/20 vision is a term used to express normal visual acuity (the clarity or sharpness of vision)
- The ability to see objects and movement outside of the direct line of vision
- The normal ability to see colors
- Discomfort in the eye and depression of central vision produced when a bright light enters the field of vision


The ability to perceive spatial relationships, especially distances between objects, in three dimensions.

Perception Reaction Process


Perception Driver sees a control device or an object on the road Identification Driver identifies the object on the road Emotion Driver decides what action to take **Reaction or Volition** Driver execute the decided action

Reaction and Braking Distance

An Example

Safety Facts

National Highway Traffic Safety Administration (NHTSA)

Fatality Analysis Reporting System (FARS) 2011National Crash Records

Fatal crashes29,757Drivers16,430Passengers5,953Motorcyclist4,612Pedestrian4,432Pedal cyclists677

Comparison

National Fatalities per 100 million vehicle miles of travel (RMVM)= <u>1.10</u> in 2011

down from <u>1.73</u> in 1994

Texas RMVM = 1.29 as compared to National RMVM of 1.11 for 2010

Fatal crashes3,016Drivers + Passengers1,980Motorcyclist471Pedestrian421

An Example of Accident Rate Calculation

It is observed that 20 traffic accidents occurred on a 18.5 mile long section of a highway in one year. The ADT on the section was 7,500 vehicles

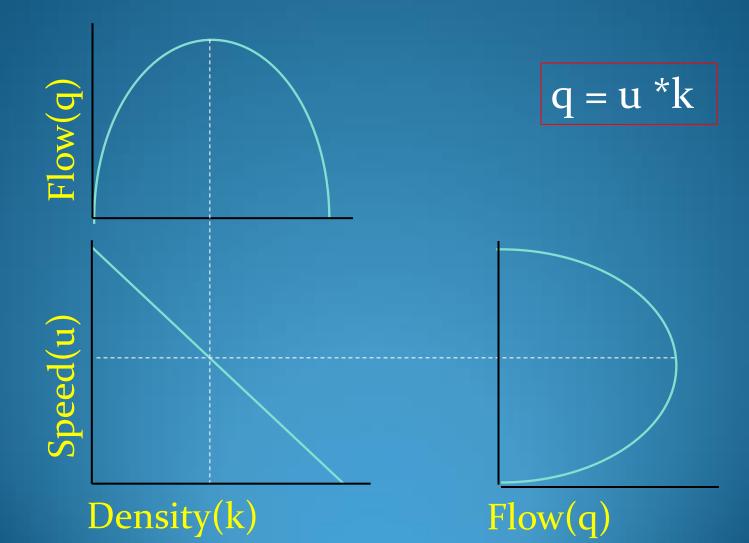
- a) Determine the rate of total accident per 100 million vehicle-miles
- b) Determine the rate of fatal accident per 100 million vehicle-miles, if 3% of the accidents were fatal

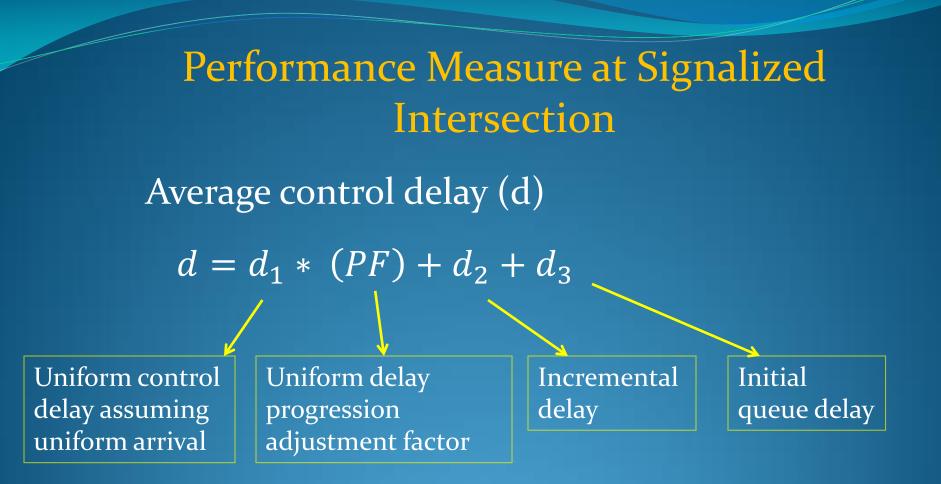
a) RMVMt = $\frac{N*100,000,000}{SL*ADT*365}$ RMVMt = $\frac{20*100,000,000}{18.5*7,500*365}$ = 3.95

b) RMVMf = 3.95 * 0.03 = 0.12

Probable Accident Causes for Different Type of Accidents

Accident Pattern	Probable Cause
Left-turn head on collision	 Large volume of left turns Restricted sight distance Too Short amber phase Absence of special left-turning phase Excessive speed on approaches
Right-angle collisions at signalized intersections	 Restricted sight distance Excessive speed on approaches Poor visibility of signals Inadequate signal timing Inadequate advance intersection warning signs Inadequate roadway lighting Large total intersection volume

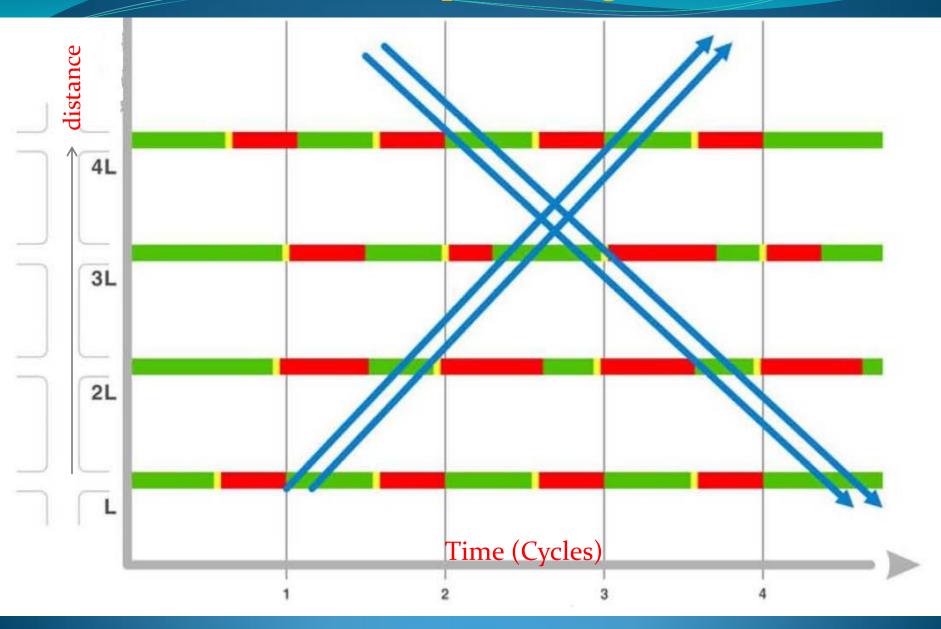

Probable Accident Causes for Different Type of Accidents


Accident Pattern	Probable Cause
Right-angle collisions at un-signalized intersections	 Restricted sight distances Large total intersection volume Excessive speed on approaches Inadequate roadway lighting Inadequate advance intersection warning signs or signal Inadequate traffic control devices
Rear-end collisions at un- signalized intersections	 Driver not aware of intersection Slippery surface Large number of turning vehicles Inadequate roadway lighting Excessive speed on approach Lack of adequate gaps Crossing pedestrians

Probable Accident Causes for Different Type of Accidents

Accident Pattern	Probable Cause
Rear-end collisions at signalized intersections	 Slippery surface Large number of turning vehicles Poor visibility of signals Inadequate signal timing Unwarranted signals Inadequate roadway lighting
Pedestrian vehicle collision	 Restricted sight distance Inadequate protection for pedestrians School crossing area Inadequate signals Inadequate phasing signal

Traffic –Stream Characteristics Speed , Flow and Density Relationship



Level of Service at Signalized Intersection

Vehicle delay is a method of quantifying level of service considering several intangible, factors, including driver discomfort, frustration, and lost travel time.

Level of Service (LOS)	Control Delay per vehicle Seconds/vehicle	General Description	
А	<10	Free flow	
В	>10-20	Stable flow (slight delays)	
С	>20-35	Stable flow (acceptable delays)	
D	>35-55	Approaching unstable flow	
E	>55-80	Unstable flow (intolerable delay)	
F	>80	Forced flow (jammed)	

Time Space Diagram

Signal Coordination

The prime benefit is reduction in delays and number of stops

Benefits are evaluated in terms of a cost function, with the intent to minimize it

cost = A * total stops + B * (total delay) + other terms

Maximization of bandwidth window

Optimization of offset

Goal of Traffic Engineering

Characteristics	Measurement	
Safe	Public safety	STOP
Rapid	Time value and customer service	
Comfortable	Level of service	
Convenient	Level of service	
Economical	Social cost	
Environmentally Sustainable	Clean air, sustainability, and connectivity	WRONG WAY

Key Information Sources

Texas Criminal and Traffic Law Manual 2011-2012 Manual on Uniform Traffic Control Devices, FHWA Highway Capacity Manual , 2010

A Policy on the Geometric Design of Highway and Streets, AASHTO Green Book, 2011

The American Society of Civil Engineers (ASCE) Institute of Transportation Engineers (ITE) The Transportation Research Board (TRB)

Traffic Engineer's Challenge People **DO NOT** always act in predictable ways Like: Road, Vehicles (mechanically), and **Traffic Control** System must safely accommodate:

Children, Elderly, and Adults Healthy and Handicapped Slow and Speedy Good drivers and bad drivers Common Issues for Today's Traffic Engineer

Growing Urban Traffic Demand Crises

- Rehabilitation and Reconstruction
- Development Impacts
- Growth Impacts
- Safety Programs
- Regional Economic Development

Responsibility and Liability

Daily safety and dependability of a large number of the public

Legal advice sought by traffic engineers

Full command on the traffic laws and regulations in the jurisdiction

Utmost care and engineering judgment must be practiced in all matters of planning, design, construction, maintenance and operations

Thank you!

References:

Traffic Engineering, William R. McShane, Roger P. Roess Prentice Hall, 1990

Traffic and Highway Engineering, Revised Second Edition, Nicholas J. Garber, Lester A. Hoel, PWS Publishing, 1996